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Abstract 

Ammonia oxidation plays an important role in global nitrogen cycle. Little information is available on 

ammonia oxidation microorganisms in paddy soils. The abundance and composition of ammonia-oxidizing 

bacteria (AOB) and ammonia-oxidizing archaea (AOA) were investigated by real-time PCR and denaturing 

gradient gel electrophoresis (DGGE) approaches based on amoA genes in selected Chinese soils from 

Chongqing (CQ, Southwest of China), Honghu (HH, Central China) and Panjin (PJ, Northeast of China) with 

10 weeks pot experiments. Little changes in the abundance and community structure of both AOA and AOB 

were detected among the treatments (without rice, rhizosphere and bulk soil) of the same region paddy soil. 

The AOB population sizes in CQ paddy soil were lower than those in HH and PJ paddy soils, while the AOA 

population sizes in CQ and HH paddy soils were lower than those in PJ paddy soil. The amoA gene copy 

numbers of AOA were more than those of AOB in all treatments of the three paddy soils. These results 

suggested that different region paddy soils determined the population and composition of AOB and AOA. 
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Introduction 

Ammonia oxidation is the first and rate-limiting step of nitrification and plays a key role in global nitrogen 

cycle. This process was typically thought to be carried out by ammonia-oxidizing bacteria. Until recently, 

metagenomic studies demonstrated the potential of ammonia oxidation by mesophilic crenarchaea (Leininger 

et al. 2006; He et al. 2007; Prosser and Nicol 2008). Increasing evidences showed that ammonia-oxidizing 

archaea (AOA) can be detected in wide habitats, such as marine water columns, sediments, estuaries and 

soils, and may be another major microbial group involved in the ammonia oxidation besides ammonia-

oxidizing bacteria (AOB). Extensive researches have paid attention to both AOB and AOA in terrestrial 

systems, but most of them concern with upland soils, and little information is available in wetland soils. 

AOB and AOA are aerobes, so it is curious to known their distribution in the flooded anaerobic environment.  

 

Irrigated paddy field is a typical wetland habitat in terrestrial ecosystems. Owing to rice roots releasing O2, 

the paddy soil forms a unique environment: the rhizosphere is partially oxic, while the bulk soil is anoxic. 

The coupling of nitrification and denitrification is favoured by the existence of oxic/anoxic interfaces in 

paddy soils (Arth et al. 1998). As the initial and rate-limiting step of the nitrification and denitrification, 

ammonia oxidation should even more be studied in paddy fields. China is one of the major rice growers in 

the world, and has 26% of its total cultivated land growing rice. The suitable environment is provided to 

study the biogeochemistry and microbiology of the rice paddy. Some studies have shown the abundance and 

community structure of sulfate reducing prokaryotes, methanotrophs and other important microbial groups 

(Zheng et al. 2008; Liu et al. 2009). However, limited information is available on ammonia-oxidizing 

organisms in paddy soils, especially in different region paddy soils. The aim of this study was to investigate 

the changes of ammonia-oxidation microbial population size and community structure in different factions 

(rhizosphere and bulk) of paddy soils collected from different regions of China.  

 

Materials and methods 

Soil samples 

Paddy soil samples were collected from three different regions of China: CQ, purple paddy soil with wheat-

rice rotation from Chongqing city (N29.83°, E106.43°), southwest of China; HH, alluvial paddy soil with 

rapeseed-rice rotation from Honghu city (N29.48°, E113.27°), Hubei Province, central China; PJ, coastal 

saline paddy soil with single-season rice from Panjin city (N41.12°, E122.06°), Liaoning Province, northeast 

of China. Some soil characteristics were listed in Table 1. All soil samples were air dried and sieved through 

a 2 mm mesh and stored at room temperature for subsequent pot experiments. 
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Table 1. Selected properties of the original soil samples 

Region 
pH 

(H2O) 

organic matter 

(g kg
-1
) 

alkali-hydrolysable N 

(mg kg
-1
) 

available phosphorus 

(mg kg
-1
) 

available potassium 

(mg kg
-1
) 

CQ 8.2 26.4 173 8.20 224.82 

HH 7.6 23.0 171 1.17 220.52 

PJ 8.1 13.6 77.0 5.92 221.97 

 

Pot experiment  

PVC pots (18 cm diameter, 20 cm height) were used to load the soil samples. Each soil was set up two 

treatments with triplicate: one treatment was rice planted and the other no rice planted. The treatment 

growing the rice was divided into bulk soil and rhizosphere with a root bag (37 µm nylon mesh, 5 cm 

diameter, 10 cm height, and one plant per bag). Each pot was filled with 3 kg of soil, including 0.2 kg soil in 

the root bag. The pots were maintained waterlogged until harvest. Rice seeds were pretreated and 

germinated. After three weeks by water culture, uniform seedlings were transplanted into the pots. Then, the 

rice plants were cultivated for 10 weeks in a greenhouse.  

 

Sample collection 

At the tenth week of the pot incubation, rice plants were harvested and meanwhile the rhizosphere and bulk 

soils were sampled from each treatment. All the samples were divided into two parts: one was stored at 4°C 

for chemical analysis and the other frozen at -80°C for subsequent DNA extraction and molecular analysis. 

The soil chemical properties at the end of the pot experiments are listed in Table 2. 
 

Table 2. Selected chemical properties of the paddy soils at the end of the pot experiment 

Region Treatment
*
 pH 

NH4
+
-N 

(mg/kg) 

NO3
-
-N 

(mg/kg) 

n-CQ 7.4±0.1 c 370±6 f 0.91±0.01 cd 

r-CQ 7.0±0.0 a 189±27 c 0.91±0.02 cd CQ 

b-CQ 7.3±0.0 b 323±21 e 0.72±0.05 bc 

n-HH 7.4±0.0 c 253±12 d 0.87±0.01 cd 

r-HH 7.0±0.1 a 110±16 b 0.88±0.07 cd HH 

b-HH 7.2±0.1 b 216±23 c 0.82±0.07 cd 

n-PJ 7.7±0.1 d 268±22 d 1.00±0.05 d 

r-PJ 7.0±0.1 a 45.1±13.2 a 0.65±0.16 b PJ 

b-PJ 7.5±0.1 c 187±16 c 0.50±0.12 a 
* Treatment: without the rice with n, rhizosphere with r and bulk soil with b. Values are mean±SD (n = 3).  
Values within the same column followed by the same letter are not significantly different at P < 0.05. 
 

Molecular analyses 

DNA was extracted from 0.5 g frozen paddy soil samples using UltraClean™ Soil DNA Isolation Kit 

following the manufacturer’s protocol. The real-time PCR quantification analysis of amoA genes was 

conducted on an iCycler iQ5 Thermocycler, and the PCR-DGGE analysis of amoA fragments was performed 

as described before (He et al. 2007; Shen et al. 2008). 

 

Results 

Abundance of AOB and AOA in paddy soils  

The amoA gene copy numbers of AOB and AOA were assessed using quantitative PCR. The bacterial amoA 

gene copy numbers in soils ranged from 1.41×10
4
 to 2.87×10

5
 copies per gram dry soil, while the archaeal 

amoA gene copy numbers ranged from 3.95×10
6
 to 2.87×10

7
 copies per gram dry soil (Figure 1). No 

significant differences in the abundance of AOB and AOA were detected among the treatments (without rice, 

rhizosphere and bulk soil) in each paddy soil (Figure 1.). Within the AOB abundance, the AOB population 

size in CQ paddy soil was remarkably lower than that in HH and PJ paddy soil. While for the AOA 

abundance, PJ paddy soil was significantly higher than CQ and HH paddy soils. Ratios of AOA to AOB 

amoA copy numbers were ranged from 22.9 to 667 in all treatments, indicating that the AOA population size 

among the treatments in three region paddy soils was higher than AOB. 

 

DGGE profiles of AOB and AOA communities in different region paddy soils  

The DGGE patterns of AOB indicated clear variations among different region paddy soils. However, the 

band patterns of AOB were similar in the same region paddy soil, regardless of without rice or rhizosphere or 

bulk soil. The correspondence analysis (CA) ordination diagram of AOB communities is shown in Figure 2, 
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and individual points on the two-dimensional biplot represented AOB communities with different treatment 

in the three paddy soils. Sixty three percent of the variance in community structure was explained by four 

eigenvectors. The first and second eigenvectors, plotted on the x and y axes, explained 32% and 18% of the 

variation, respectively; thus, 50% of the cumulative variation was explained. The difference between the 

communities with respect to the first and second eigenvectors was the distance between the points 

representing the communities on the ordination diagram. A comparison of the distances showed that the 

AOB communities from the same paddy soil had the most similar structure. Take CQ paddy soil as example, 

the AOB communities associated with the treatments of without rice, rhizosphere and bulk were separated 

less than 0.5 standard deviation. However, the AOB communities from the different paddy soils were the 

most dissimilar and were separated by approximately 1 or more than 1 standard deviation. The CA supported 

visual observation of the DGGE gel, indicating that the different treatments (without rice, rhizosphere and 

bulk soil) did not influence the species data while the different region paddy soils did affect community 

structure. 

 

The DGGE results of AOA also revealed that band patterns had little change among the treatments of 

without rice, rhizosphere and bulk soil in the same region paddy soil. There were also obvious differences 

among the three region paddy soils in DGGE patterns. From the CA ordination diagram of AOA 

communities, the treatments from the same paddy soil were clustered together and three distinct clusters 

were observed according to the three region paddy soils (Figure3). Eighty seven percent of the variance in 

community structure was explained by four eigenvectors, thus the majority of the changes in community 

structure can be attributed to the different region paddy soils.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Abundances of AOB and AOA 

in different region paddy soils (CQ, HH 

and PJ) with the treatments of without 

rice (with n), rhizosphere (with r) and 

bulk (with b). Values are mean±SD (n = 

3). Within AOB or AOA amoA copy 

numbers, values followed by the same 

letter are not significantly different at P 

< 0.05. Ratios of AOA to AOB amoA 

copy numbers are shown at the bottom 

with each treatment. 

Figure 2. Correspondence analysis (CA) 
ordination diagram of AOB communities with 
the treatments of without rice (with n), 
rhizosphere (with r) and bulk (with b) in 
different region paddy soils (CQ, HH and PJ) 
generated by the DGGE profiles. Eigenvectors 
for first and second ordination axes (x and y 
axes) explain 32% and 18% of the variation, 
respectively. 

 

Figure 3. Correspondence analysis (CA) 
ordination diagram of AOA communities with 
the treatments of without rice (with n), 
rhizosphere (with r) and bulk (with b) in 
different region paddy soils (CQ, HH and PJ) 
generated by the DGGE profiles. Eigenvectors 
for first and second ordination axes (x and y 
axes) explain 51% and 23% of the variation, 
respectively. 
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Conclusion 

This study found that both AOB and AOA abundance and community composition existed few changes 

among the treatments (without rice, rhizosphere and bulk soil) in each paddy soil, but distinct differences 

were observed among the three paddy soils, suggesting different region paddy soils affected the population 

and composition of AOB and AOA. We also highlighted the need to further study the AOB and AOA growth 

and activity in paddy soils to assess their contribution in N cycle in paddy soils, together with denitrification 

and annamox processes. 
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